克拉克流量計(jì)VC 12 K1 F1 P2 SH測(cè)量精度
KRACHT流量計(jì)實(shí)現(xiàn)毫升級(jí)別測(cè)量,測(cè)量精度可以達(dá)到千分之三,重復(fù)精度可以達(dá)到千分之一。在液壓測(cè)試臺(tái)上有很多使用,感興趣都可以找我們進(jìn)行技術(shù)選型!
KRACHT流量計(jì)的測(cè)量精度:
同樣是毫米級(jí)的還有5G微波:
第五代移動(dòng)通信系統(tǒng) (5th generation networks,簡(jiǎn)稱5G)離正式商用(2020年)越來(lái)越接近。5G在傳輸速率上應(yīng)當(dāng)實(shí)現(xiàn)比4G快十倍以上,即5G的傳輸速率可實(shí)現(xiàn)1Gb/s。
無(wú)線傳輸增加傳輸速率大體上有兩種方法,其一是增加頻譜利用率,其二是增加頻譜帶寬。相對(duì)于提高頻譜利用率,增加頻譜帶寬的方法顯得更簡(jiǎn)單直接。現(xiàn)在常用的5GHz以下的頻段已經(jīng)非常擁擠,為了尋找新的頻譜資源,各大廠商 想到的方法就是使用毫米波技術(shù)。
毫米波的定義
微波波段包括:分米波,厘米波,毫米波和亞毫米波。其中,毫米波(millimeterwave),通常指頻段在30~300GHz,相應(yīng)波長(zhǎng)為1~10mm的電磁波,它的工作頻率介于微波與遠(yuǎn)紅外波之間,因此兼有兩種波譜的特點(diǎn)。毫米波的理論和技術(shù)分別是微波向高頻的延伸和光波向低頻的發(fā)展。
毫米波在整個(gè)光譜之中的具體位置
毫米波工作頻率范圍示意圖
克拉克流量計(jì)VC 12 K1 F1 P2 SH測(cè)量精度
毫米波的發(fā)展
自1873年Maxwell發(fā)表《電磁學(xué)通論》以來(lái),人們充分利用電磁資源在拓寬平鋪方面作了大量的工作。對(duì)于毫米波的研究,早在1889年就已提出,至今已有一個(gè)世紀(jì)的漫長(zhǎng)歲月。毫米波的發(fā)展一直時(shí)起時(shí)落,但對(duì)毫米波的研究總是吸引著很多的學(xué)者,從而獲得了大量的基本知識(shí)。研究毫米波必須有相應(yīng)的技術(shù)作為支撐,所以此領(lǐng)域的研究一直比較緩慢,可以說(shuō)一波三折。但隨著相應(yīng)技術(shù)的發(fā)展以及在一些重要場(chǎng)合下紅外和可見(jiàn)光技術(shù)不能提供最佳解決方案的時(shí)候,毫米波由于其區(qū)別于普通微波的特點(diǎn),其潛在的研究和應(yīng)用價(jià)值日益突出。
直至20世紀(jì)70年代,由于毫米波集成電路和毫米波固體器件的研制成功并獲得批量生產(chǎn),使生產(chǎn)成本日趨下降,毫米波通信才猶如枯木逢春,蓬勃發(fā)展開(kāi)來(lái)??梢灶A(yù)計(jì),隨著科技的進(jìn)步,毫米波通信必將呈現(xiàn)出廣闊的應(yīng)用前景。
毫米波的傳播特性
通常毫米波頻段是指 30GHz~300GHz, 相應(yīng)波長(zhǎng)為 1mm~10mm。毫米波通信就是指以毫米波作為傳輸信息的載體而進(jìn)行的通信。目前絕大多數(shù)的應(yīng)用研究集中在幾個(gè)“大氣窗口"頻率和三個(gè)“衰減峰"頻率上。
1、是一種典型的視距傳輸方式
毫米波屬于甚高頻段, 它以直射波的方式在空間進(jìn)行傳播,波束很窄,具有良好的方向性。一方面,由于毫米波受大氣吸收和降雨衰落影響嚴(yán)重,所以單跳通信距離較短;另一方面,由于頻段高,干擾源很少,所以傳播穩(wěn)定可靠。因此,毫米波通信是一種典型的具有高質(zhì)量、恒定參數(shù)的無(wú)線傳輸信道的通信技術(shù)。
2、具有“大氣窗口"和“衰減峰"
“大氣窗口"是指 35GHz、45GHz、94GHz、140GHz、 220GHz 頻段, 在這些特殊頻段附近, 毫米波傳播受到的衰減較小。一般說(shuō)來(lái),“大氣窗口"頻段比較適用于點(diǎn)對(duì)點(diǎn)通信,已經(jīng)被低空空地和地基雷達(dá)所采用。而在 60GHz、 120GHz、 180GHz 頻段附近的衰減出現(xiàn)極大值,約高達(dá) 15dB / km 以上, 被稱作“衰減峰"。通常這些“衰減峰"頻段被多路分集的隱蔽網(wǎng)絡(luò)和系統(tǒng)優(yōu)先選用,用以滿足網(wǎng)絡(luò)安全系數(shù)的要求。
3、降雨時(shí)衰減嚴(yán)重
與微波相比, 毫米波信號(hào)在惡劣的氣候條件下,尤其是降雨時(shí)的衰減要大許多,嚴(yán)重影響傳播效果。經(jīng)過(guò)研究得出的結(jié)論是,毫米波信號(hào)降雨時(shí)衰減的大小與降雨的瞬時(shí)強(qiáng)度、距離長(zhǎng)短和雨滴形狀密切相關(guān)。進(jìn)一步的驗(yàn)證表明: 通常情況下,降雨的瞬時(shí)強(qiáng)度越大、距離越遠(yuǎn)、雨滴越大,所引起的衰減也就越嚴(yán)重。因此,對(duì)付降雨衰減的辦法是在進(jìn)行毫米波通信系統(tǒng)或通信線路設(shè)計(jì)時(shí),留出足夠的電平衰減余量。
4、對(duì)沙塵和煙霧具有很強(qiáng)的穿透能力
大氣激光和紅外對(duì)沙塵和煙霧的穿透力很差,而毫米波在這點(diǎn)上具有明顯優(yōu)勢(shì)。大量現(xiàn)場(chǎng)試驗(yàn)結(jié)果表明, 毫米波對(duì)于沙塵和煙霧具有很強(qiáng)的穿透力,幾乎能無(wú)衰減地通過(guò)沙塵和煙霧。甚至在由爆炸和金屬箔條產(chǎn)生的較高強(qiáng)度散射的條件下, 即使出現(xiàn)衰落也是短期的,很快就會(huì)恢復(fù)。隨著離子的擴(kuò)散和降落, 不會(huì)引起毫米波通信的嚴(yán)重中斷。
毫米波通信的優(yōu)點(diǎn)
1、極寬的帶寬
通常認(rèn)為毫米波頻率范圍為26.5~300GHz,帶寬高達(dá)273.5GHz。超過(guò)從直流到微波全部帶寬的10倍。即使考慮大氣吸收,在大氣中傳播時(shí)只能使用四個(gè)主要窗口,但這四個(gè)窗口的總帶寬也可達(dá)135GHz,為微波以下各波段帶寬之和的5倍。這在頻率資源緊張的今天無(wú)疑吸引力。
2、波束窄
在相同天線尺寸下毫米波的波束要比微波的波束窄得多。例如一個(gè)12cm的天線,在9.4GHz時(shí)波束寬度為18度,而94GHz時(shí)波速寬度僅1.8度。因此能分辨相距更近的小目標(biāo)或更為清晰地觀察目標(biāo)的細(xì)節(jié)。
3、探測(cè)能力強(qiáng)
可以利用寬帶廣譜能力來(lái)抑制多徑效應(yīng)和雜亂回波。有大量頻率可供使用,有效的消除相互干擾。在目標(biāo)徑向速度下可以獲得較大的多譜勒頻移,從而提高對(duì)低速運(yùn)動(dòng)物體或振動(dòng)物體的探測(cè)和識(shí)別能力。
4、安全保密好
毫米波通信的這個(gè)優(yōu)點(diǎn)來(lái)自兩個(gè)方面: a)由于毫米波在大氣中傳播受氧、水氣和降雨的吸收衰減很大, 點(diǎn)對(duì)點(diǎn)的直通距離很短, 超過(guò)這個(gè)距離信號(hào)就會(huì)變得十分微弱, 這就增加了敵方進(jìn)行和干擾的難度。b)毫米波的波束很窄, 且副瓣低, 這又進(jìn)一步降低了其被截獲的概率。
5、傳輸質(zhì)量高
由于頻段高毫米波通信基本上沒(méi)有什么干擾源,電磁頻譜極為干凈,因此,毫米波信道非常穩(wěn)定可靠,其誤碼率可長(zhǎng)時(shí)間保持在 10- 12 量級(jí),可與光纜的傳輸質(zhì)量相媲美。
6、全天候通信
毫米波對(duì)降雨、沙塵、煙霧和等離子的穿透能力卻要比大氣激光和紅外強(qiáng)得多。這就使得毫米波通信具有較好的全天候通信能力,保證持續(xù)可靠工作。
7、元件尺寸小
和微波相比,毫米波元器件的尺寸要小得多。因此毫米波系統(tǒng)更容易小型化。
期待更多客戶選擇德國(guó)KRACHT流量計(jì)、克拉赫特齒輪流量計(jì)。
kracht新型號(hào):
VC 0,025 K1 F1 P2 SH
VC 0,025 K1 F1 P2 SC
VC 0,025 K1 F1 P2 SM
VC 0,025 K1 F1 P2 HH
VC 0,025 K1 F1 P2 VH
VC 0,025 G2 F3 P2 SH
VC 0,025 G2 F3 R2 SH
VC 0,025 K2 F3 R2 SH
VC 0,025 H2 F3 P2 VH
VC 0,025 K1 E1 P2 HH
VC 0,025 G2 E3 R2 SH
VC 0,025 K2 E3 R2 SH
VC 0,025 K1 P1 P2 HH
VC 0,025 K1 P1 P2 XH
VC 0,025 G2 P3 R2 SH
VC 0,025 K2 P3 R2 SH
VC 0,04 K1 F1 P2 SH
VC 0,04 K1 F1 P2 HH
VC 0,04 K1 F1 P2 VH
VC 0,04 K1 F1 P2 XH
VC 0,04 K2 F3 P2 SH
VC 0,04 K2 F3 P2 XH
VC 0,04 K2 F3 R2 SH
VC 0,04 K1 E1 P2 SH
VC 0,04 K1 E1 P2 RH
VC 0,04 K1 E2 P2 SC
VC 0,04 K2 E3 P2 XH
VC 0,04 K2 E3 P2 SC
VC 0,04 K1 P1 P2 SH
VC 0,04 K2 P3 P2 SH
VC 0,04 H2 P3 R2 XH
VC 0,1 K1 F1 P2 SH
VC 0,1 K1 F1 P2 SV
VC 0,1 K1 F1 P2 SM
VC 0,1 K1 F1 P2 HH
VC 0,1 K1 F1 P2 XH
VC 0,1 G1 F1 P2 SH
VC 0,1 K2 F3 P2 SH
VC 0,1 K2 F3 R2 SH
VC 0,1 K2 P3 P2 SH
VC 0,1 K1 E1 P2 SH
VC 0,1 K1 E2 P2 SC
VC 0,1 K1 P1 P2 SH
VC 0,2 K1 F1 P2 SH
VC 0,2 K1 F1 P2 SM
VC 0,2 K1 F1 P4 SK /220
VC 0,2 K1 F1 P2 HH
VC 0,2 K1 F1 P2 XH
VC 0,2 G1 F1 P2 SH
VC 0,2 G1 F1 P2 SH /101
VC 0,2 G1 F1 P2 SH /113
VC 0,2 G2 F3 P2 SH
VC 0,2 K2 F3 P2 XH
VC 0,2 K2 F3 R2 SH
VC 0,2 K1 E1 P2 SH
VC 0,2 K2 E3 P2 SH
VC 0,2 K1 P1 P2 HH
VC 0,2 G2 P3 R2 VH
VC 0,2 K2 P3 P2 SH
VC 0,2 H2 P3 P2 SH
VC 0,2 K5 F3 R2 SH
VC 0,2 K5 P3 R2 SH
VC 0,2 K5 E3 R2 SH
VC 0,2 K5 F3 R2 SM
VC 0,2 K4 F3 R2 SH
VC 0,2 K4 P3 R2 SH
VC 0,4 K1 F1 P2 SH
VC 0,4 K1 F1 P2 SV
VC 0,4 K1 F1 P2 SM
VC 0,4 K1 F1 P4 SK /220
VC 0,4 K1 F1 P2 HH
VC 0,4 K1 F1 P2 VH
VC 0,4 K1 F1 P2 XH
VC 0,4 G1 F1 P2 SH
VC 0,4 G1 F1 P2 SH /101
VC 0,4 K1 E1 P2 SH
VC 0,4 G1 E1 P2 SH
VC 0,4 K1 P1 P2 SH
VC 0,4 K1 P1 P2 VH
VC 0,4 K1 P1 P2 XH
VC 1 K1 F1 P2 SH
VC 1 K1 F1 P2 SC
VC 1 K1 F1 P2 HH
VC 1 K1 F1 P2 VH
VC 1 K1 F1 P2 XH
VC 1 C1 F1 P2 SH
VC 1 G1 F1 P2 SH
VC 1 G1 F1 P2 SM
VC 1 G1 F1 P2 SH /101
VC 1 G1 F1 P4 SH
VC 1 K2 F3 P2 XH
VC 1 H2 F3 P2 SH
VC 1 K1 E1 P2 SH
VC 1 K1 E1 P2 SC
VC 1 K1 E1 P2 HH
VC 1 K2 E3 P2 SH
VC 1 K1 P1 P2 HH
VC 1 K1 P1 P2 XH
VC 1 G1 P1 P2 SH
VC 1 K2 P3 P2 SH
VC 1 H2 P3 P2 SH
VC 1 H2 P3 P2 HH
VC 3 K1 F1 P2 SH
VC 3 K3 F1 P2 SH
VC 3 K1 F1 P2 HH
VC 3 K1 F1 P2 VH
VC 3 K1 F1 P2 XH
VC 3 G1 F1 P2 SH
VC 3 G1 F1 P2 SM
VC 3 G2 F3 P2 SH
VC 3 K1 E1 P2 SH
VC 3 K1 E1 P2 HH
VC 3 G1 E1 P2 SH
VC 3 K1 P1 P2 SH
VC 3 K1 P1 P2 HH
VC 5 K1 F1 P2 SH
VC 5 K3 F1 P2 SH
VC 5 K1 F1 P4 SK /220
VC 5 K1 F1 P2 VH
VC 5 C1 F1 P4 SK /220
VC 5 K1 F1 P2 SH /124
VC 5 G1 F1 P2 SH
VC 5 G1 F1 P2 SH /113
VC 5 K1 E1 P2 SH
VC 5 K1 P1 P2 SH
VC 5 G1 P1 P2 SH
VC 5 K2 P3 P2 SH
VC 12 K1 F1 P2 SH
VC 12 K1 F1 P2 SM
VC 12 K1 F1 P4 SK /220
VC 16 K1 F1 P2 SH
VCA 0,04 K4 F3 R1 SH
VCA 0,04 K4 F3 R1 VH
VCA 0,1 K5 F3 R1 SH
VCA 0,2 U4 F4 R1 SH
VCA 0,2 U4 F4 R1 SM
VCA 0,2 U4 F4 R1 VH /148
VCA 0,2 U4 F4 R1 VH
VCA 0,2 U4 E4 R1 SH
VCA 0,2 U4 F4 P2 VH /213
VCA 2 U4 F4 R1 SH
VCA 2 U4 F4 P1 SH
VCA 2 M5 F4 R1 SH
VCA 2 M5 F4 R1 VH
VCA 2 M5 F4 R2 SH
VCA 2 M5 F4 P1 SH
VCA 2 U4 F4 R1 SH /40
VCA 2 M5 F4 R1 S5H /81
VCA 2 M5 F4 R1 SH /40
VCA 2 M5 F4 R1 VV
VCA 2 M5 F4 R1 S5H /81
VCG 2 M1 F1 P2 SH
VCG 2 M1 F1 P2 XH
VCN 0,04 K2 F3 R1 SH
SVC 4 K3 F1 S2 SH
SVC 4 K3 F1 R2 SH
SVC 10 K1 F1 S2 SH
SVC 10 K1 F1 R2 SH
SVC 10 K1 F1 R2 HH
SVC 10 K1 L1 R2 HH
SVC 10 K1 P1 R2 HH
SVC 10 K3 F1 S2 SH
SVC 40 K1 F1 S2 SH
SVC 40 K1 F1 S2 HH
SVC 40 K1 F1 S2 VH
SVC 100 K1 F1 D2 SH
SVC 100 K1 F1 S2 SH
SVC 100 K1 F1 S2 VH